European Archival Records and Knowledge Preservation

INTRODUCTION TO DATA WAREHOUSING AND BIG DATA

Janet Delve
School of Creative
Technologies

Outline

- Data Warehouses, hidden in plain sight...
- Relational databases (Online Transactional Processing - OLTP)
- Data Warehouse fundamentals
- Making Analysis Easy
- Online Analytical Processing (OLAP)
- Big Data

Data Warehouse example

CLOUD // SOFTWARE AS A SERVICE

NEWS

2/15/2013 05:21 PM

Amazon Launches Redshift Data Warehousing As A Service

Amazon promises 10 times the performance at one-tenth the cost of onpremises data warehouses. Can it deliver?

Charles Babcock News

Connect Directly

1 COMMENT COMMENT NOW

Login

Amazon Web Services on Friday carried out the promised launch of its Redshift data warehouse service, with which it hopes to disrupt on-premises data warehouses.

"We designed Amazon Redshift to deliver 10 times the performance at one-tenth the cost of the on-premises data warehouses that are commonly used today," wrote Jeff Barr, AWS chief evangelist, in a blog post.

It remains to be seen whether a cloud data warehouse can function with that much less expense than enterprise systems and be

Amazon's 7 Cloud Advantages: Hype Vs. Reality

(click image for larger view and for slideshow)

Data Warehouse example google

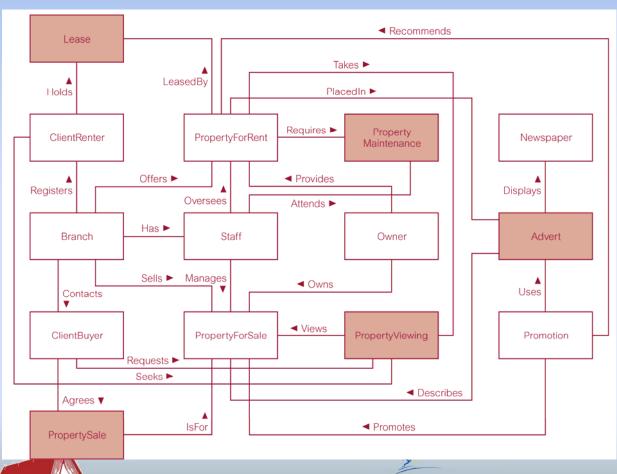
Data Warehouse examples

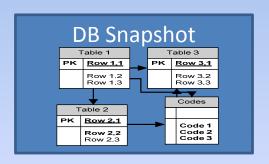
- Virgin Megastores charts real-time retailing trends
- High-street retailer invests in business intelligence with data warehousing project
- Miya Knights, <u>Computing</u>, 09 Feb 2006
- Virgin Megastores is using data warehousing software as the basis of a business intelligence (BI) project to improve the quality of its performance reporting.

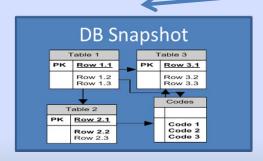
Examples

- The high-street retailer has created a repository for real-time access to sales figures fed from its shops, to improve buying and store management processes.
- Tony Johnson, IT director for Virgin Megastores, says previous performance reporting capabilities did not provide a real-time view of what the company sells in each shop, and when.
- 'We are using this reporting project to focus on the key areas of stores and margins,' said Johnson. 'We have a real-time view of stock, and other applications can link into this at the central, buying level.'

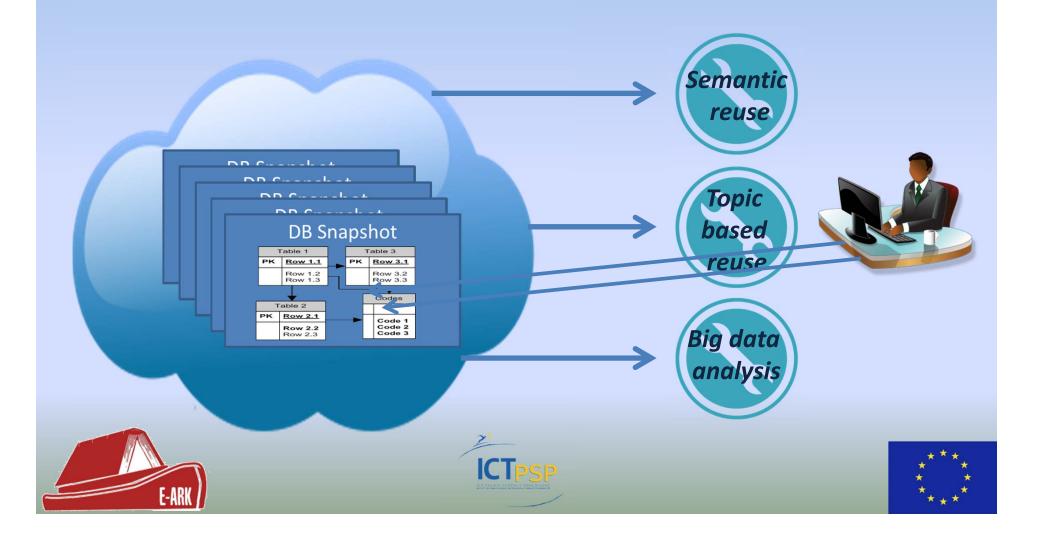
Relational Database


- Built for current data (banks transactions etc.)
- Mathematical basis
- Efficient for processing...BUT


Transactional Processing (OLTP)

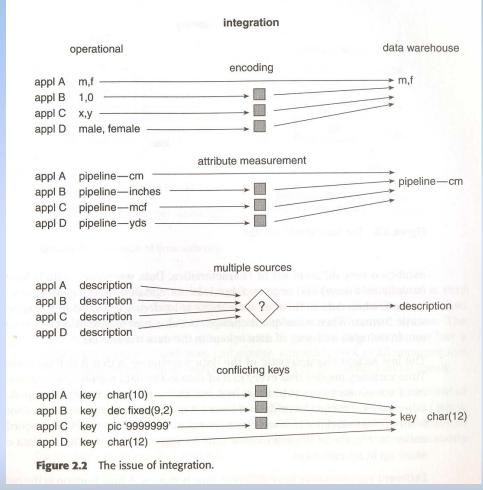

JOINS TIME ANALYSIS?

Data Warehouse fundamentals SNAPSHOTS



Data warehouse

• ...a collection of database snapshots

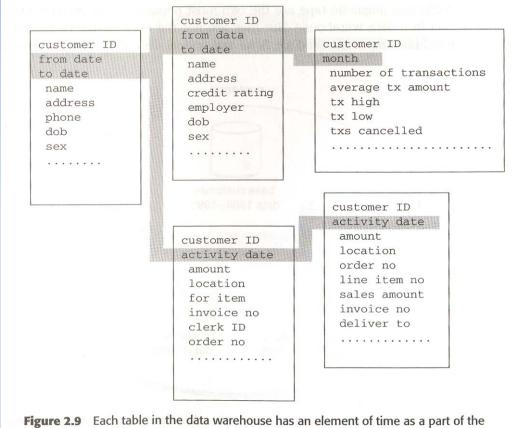

Data Warehousing fundamentals

- A DW is subject-oriented, integrated, non-volatile & time-variant.
- Classical operations are organised around the applications of the company.
- E.g. for an insurance company the applications may be car, health, life and accident. The major subjects are customer, policy, premium and claim.
- Integration is the most important facet of a DW.
 Fig. 2.2 Previous inconsistencies are ironed out and all data unambiguously entered into DW.

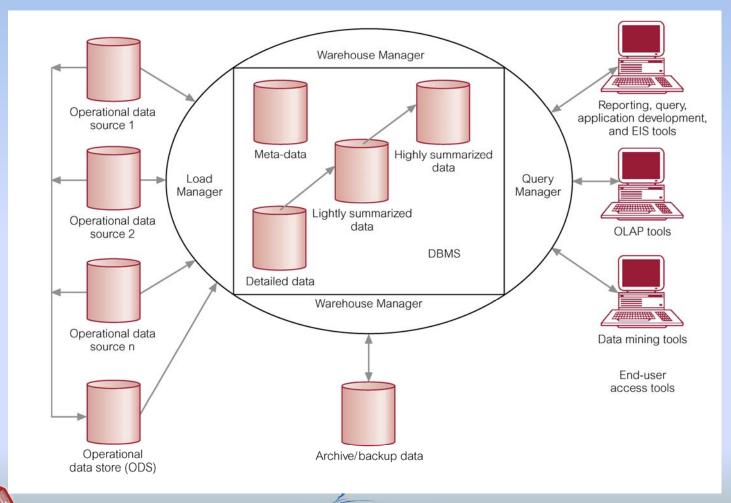
Data Warehousing fundamentals:

harmonize

Data Warehousing fundamentals


- Non-volatile data in a DW means that it is not changed in the way data is in operational database – data is loaded en masse and is NOT updated.
- Time- variant DW time horizon 5 –10 years, operational database 2-3 months. DW snapshots, operational database current data, DW always has element of time, operational database might or might not have.

Data Warehousing fundamentals time


Figure 2.9 Each table in the data warehouse has an element of time as a part of the key structure, usually the lower part.

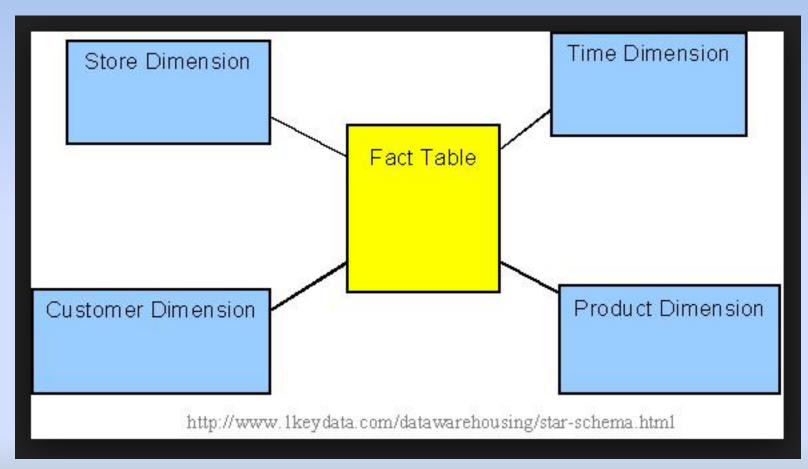
Typical Architecture of a Data Warehouse

Comparison of OLTP Systems and Data Warehousing

Table 30.1 Comparison of OLTP systems and data warehousing systems.

OLTP systems	Data warehousing systems	
Holds current data	Holds historical data	
Stores detailed data	Stores detailed, lightly, and highly summarized data	
Data is dynamic	Data is largely static	
Repetitive processing	Ad hoc, unstructured, and heuristic processing	
High level of transaction throughput	Medium to low level of transaction throughput	
Predictable pattern of usage	Unpredictable pattern of usage	
Transaction-driven	Analysis driven	
Application-oriented	Subject-oriented	
Supports day-to-day decisions	Supports strategic decisions	
Serves large number of clerical/operational users	Serves relatively low number of managerial users	

Data warehousing


- Snapshots (Useful for DB archiving)
- Star schema dimensional model
- MADE FOR EASY ANALYSIS

Easy Analysis: Star Schema

Retail Sales Dimensional Model

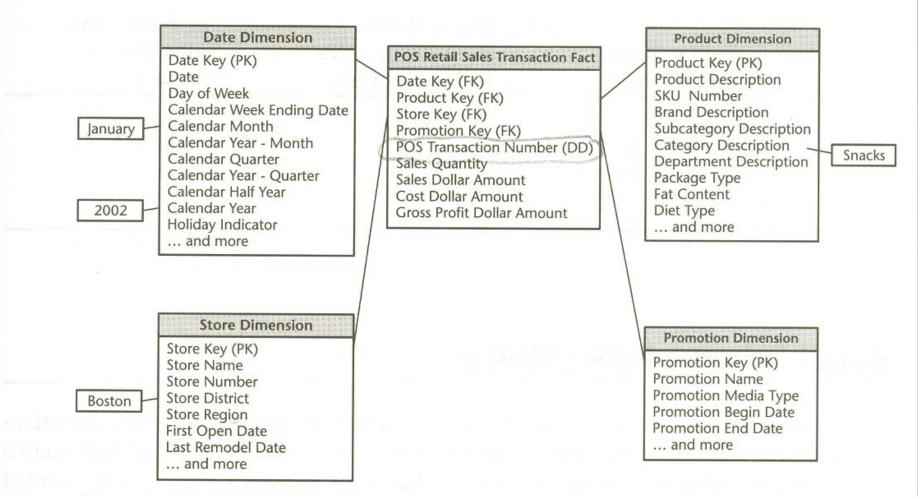


Figure 2.10 Querying the retail sales schema.

Retail Sales Product Dimension

Product Dimension

Product Key (PK) **Product Description** SKU Number (Natural Kev) **Brand Description** Category Description Department Description Package Type Description Package Size Fat Content Diet Type Weight Weight Units of Measure Storage Type Shelf Life Type Shelf Width Shelf Height Shelf Depth

POS Retail Sales Transaction Fact

Date Key (FK)
Product Key (FK)
Store Key (FK)
Promotion Key (FK)
POS Transaction Number
Sales Quantity
Sales Dollar Amount
Cost Dollar Amount
Gross Profit Dollar Amount

Date Dimension

Store Dimension

Promotion Dimension

Figure 2.7 Product dimension in the retail sales schema.

... and more

Factless fact table

Term Year Dimension

Term Key (PK)
Term Description
Academic Year
Term/Season

Course Dimension

Course Key (PK)
Course Name
Course School
Course Format
Course Credit Hours

Faculty Dimension

Faculty Key (PK)
Faculty Employee ID (Natural Key)
Faculty Name
Faculty Address Attributes ...

Faculty Type

Faculty Tenure Indicator

Faculty Original Hire Date

Faculty Years of Service

Faculty School

Student Registration Event Fact

Term Key (FK)
Student Key (FK)
Declared Major Key (FK)
Credit Attainment Key (FK)
Course Key (FK)
Faculty (FK)
Registration Count (always = 1)

Student Dimension

Student Key (PK)
Student ID (Natural Key)
Student Attributes ...

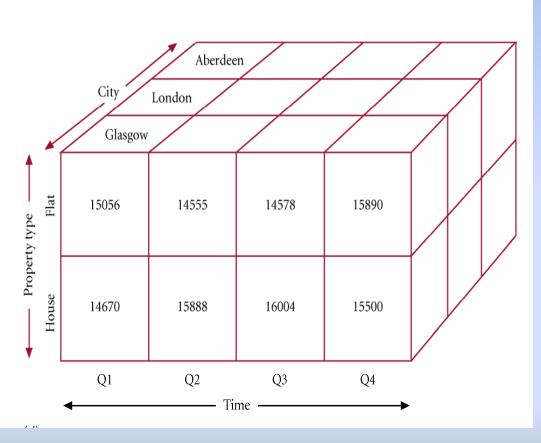
Declared Major Dimension

Declared Major Key (PK)
Declared Major Description
Declared Major School
Interdisciplinary Indicator

Credit Attainment Dimension

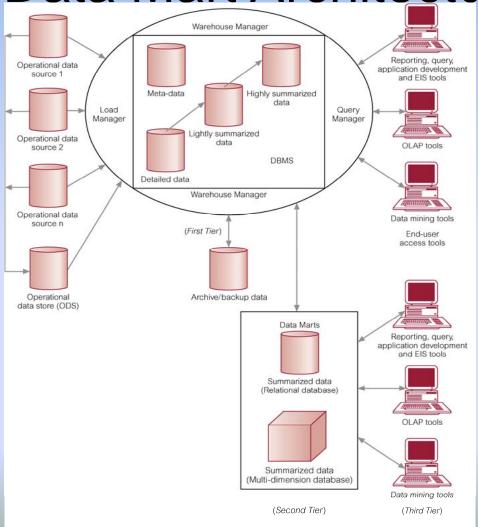
Credit Attainment Key (PK) Class Level Description

Figure 12.2 Student registration events as a factless fact table.



Online Analytical Processing (OLAP)

Property Type	City	Time	Total Revenue
Flat	Glasgow	Q1	15056
House	Glasgow	Q1	14670
Flat	Glasgow	Q2	14555
House	Glasgow	Q2	15888
Flat	Glasgow	Q3	14578
House	Glasgow	Q3	16004
Flat	Glasgow	Q4	15890
House	Glasgow	Q4	15500
Flat	London	Q1	19678
House	London	Q1	23877
Flat	London	Q2	19567
House	London	Q2	28677
	•••••		



Typical Data Warehouse and Data Mart Architecture

What do we mean by big data in the biomedical sciences?

Dr Rhiannon Lloyd
Brain tumour research group

Big Data

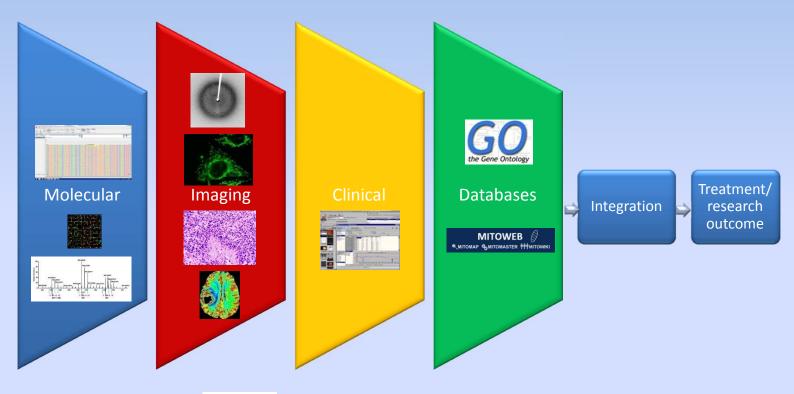
What is big data?

Data types

• 3 Vs

Big Data

- Large, diverse and complex datasets that are getting bigger
- Emanate from single source or multiple sources that need integrating
- Exceed currently used approaches to access, manage, integrate and analyse



What is happening in the UK?

The size of big data is not the only issue, heterogeneity is also a problem

Types of data

3Vs

- Volume,
- Velocity
- Variety
- Cloud
- Open Source
- Hadoop etc.

