RDBMS and Big Data

Database Technologies and trade-offs

Nathan Cunningham

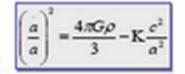
Associate Director for Big Data Network Support

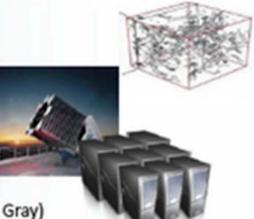
University of Essex

Outline

- Data Intensive Research Complex data
- Preserving Data Collections
- Data and information products
- Trade offs
- Data as a service a unified information architecture
- Fundamental preservation challenges for complex data types

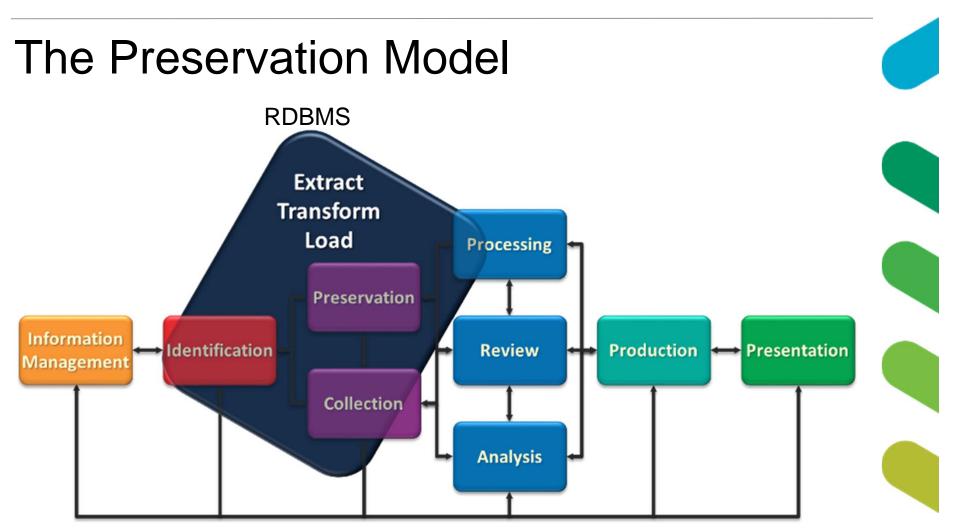
Data Intensive Research

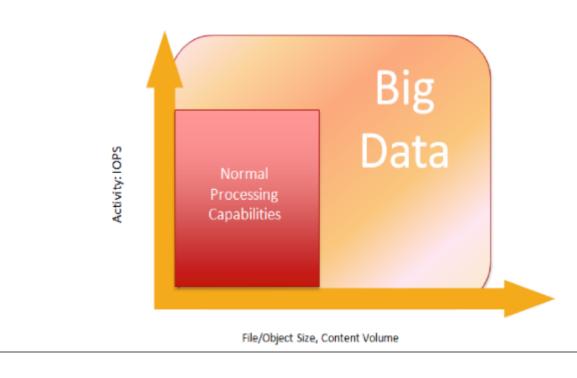

Emergence of a Fourth Research Paradigm


- 1. Thousand years ago Experimental Science
 - Description of natural phenomena
- 2. Last few hundred years Theoretical Science
 - Newton's Laws, Maxwell's Equations...
- 3. Last few decades Computational Science
 - Simulation of complex phenomena
- 4. Today Data-Intensive Science
 - Scientists overwhelmed with data sets from many different sources
 - Data captured by instruments
 - Data generated by simulations
 - Data generated by sensor networks
 - eScience is the set of tools and technologies to support data federation and collaboration
 - For analysis and data mining
 - For data visualization and exploration
 - For scholarly communication and dissemination

(With thanks to Jim Gray)

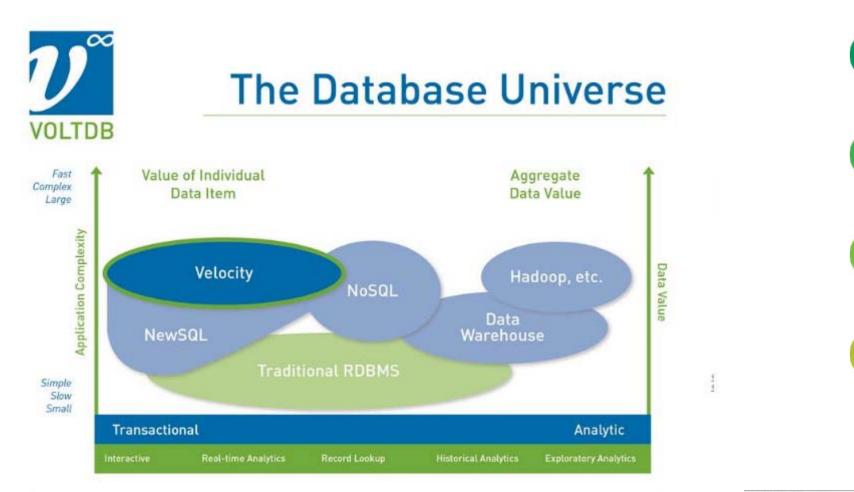
(2007) The Forth Paradigm, Tony Hey, Microsoft Research Labs





The Sedona Conference® Database Principles Addressing the Preservation and Production of Databases and Database Information in Civil Litigation

A working definition of Big Data

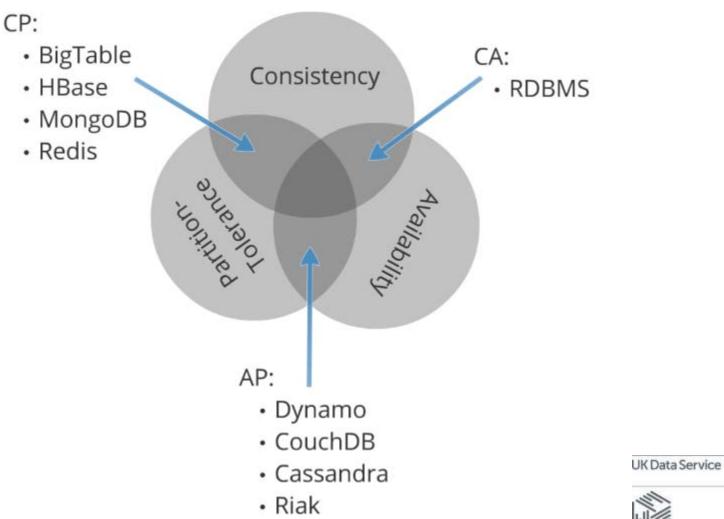

Data sets that exceed the boundaries and sizes of normal processing capabilities, forcing you to take a non-traditional approach

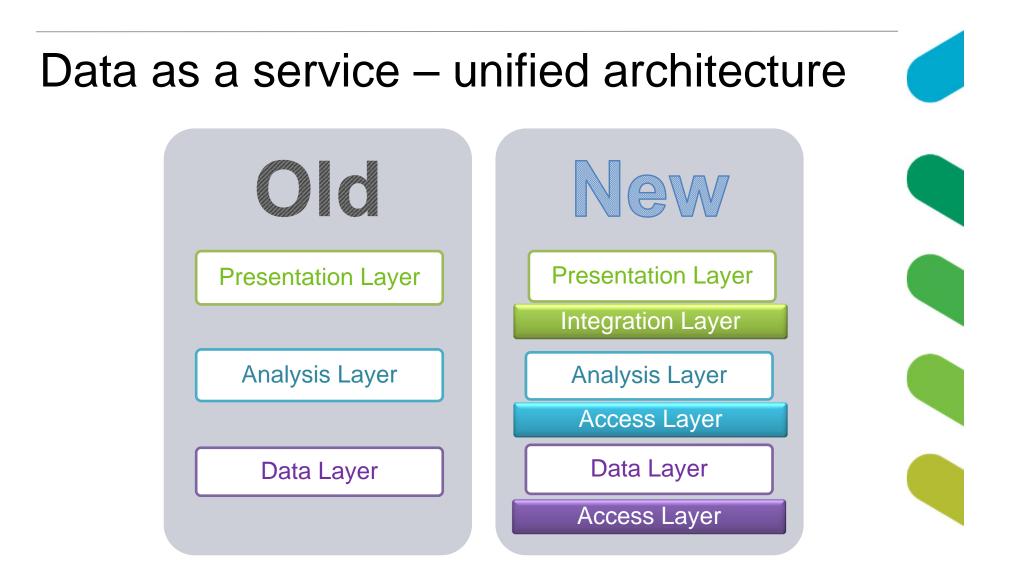
Data and Information Products

UK Data Service

VoltDB Proprietary

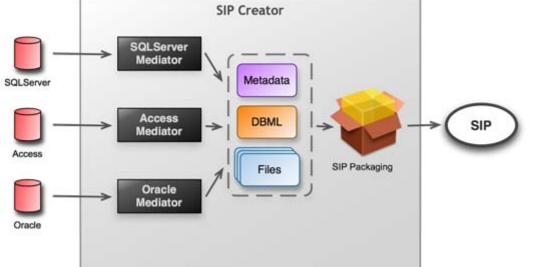
RDBMS/NoSQL/NewSQL


- RDBMS have always been distinguished by the ACID principle set (atomicity, consistency, integrity, and durability), which ensures that data integrity is preserved at all costs.
- Most NoSQL products jettison ACID performance to achieve data storage flexibility. They remove hard constraints, such as tabular row-store and strict data definitions, and they provision for scale with distributed architectures supporting highperformance throughput.
- NewSQL, retain both SQL and ACID, but they overcome the performance overhead of RDBMS caused by features such as latching shared data structures, buffer pooling, record level locking, and write-ahead logging, primarily by embracing distributed computing architectures.


Trade-off

Characteristic	RDBMS	NoSQL	NewSQL	
ACID compliance (Data, Transaction integrity)	Yes	No	Yes	
OLAP/OLTP	Yes	No	Yes	
Data analysis (aggregate, transform, etc.)	Yes	No	Yes	
Schema rigidity (Strict mapping of model)	Yes	No	Maybe	
Data format flexibility	No	Yes	Maybe	
Distributed computing	Yes	Yes	Yes	
Scale up (vertical)/Scale out (horizontal)	Yes	Yes	Yes	
Performance with growing data	Fast	Fast	Very Fast	
Performance overhead	Huge	Moderate	Minimal	
Popularity/comm unity Support	Huge	Growing	Slowly growing)ata Ser

Service Providers



Building the new layers with APIs/web services to integrate with existing archive services

Key challenge: Preservation of Executable Content

 We need to establish a robust ecosystem for long-term preservation of software, RDMS, and other executable content.

 Olive Archive <u>https://olivearchive.org/about/</u> Carnegie Mellon University / IBM
UKData Service

Making new solutions – the Web of Data

The Evolving Web Paradigm by jeffsayre.com

The Data Space

	Web 1.0	Web 2.0	Web 3.0
Data State	Primarily read only; data static; indirect sharing through hyperlinks	Read and write; data shareable; content interactive; data mashable	Read, write, execute; dynamic Web services; data linked and structured; data meshable
Data Storage	Data heavily locked into operating environment; mainly flat file with some relational; most data centralized	Mainly RDBMS with some OODBMS (even ORDBMS); some decentralization; most data still not abstracted, instead locked to operating environment	RDBMSs used more strategically with Document and Graph databases coming into their own; NoSQL DBs become popular; emergence of a Global Meta-DBMS
Data Discovery	Via rudimentary text search	Via advanced text search but most data closed to global querying	Via semantic search and query; data fully abstracted with heavy reliance on dereferenceable URIs; data stored in disparate locations are globally queryable, can be integrated into a federated DB
Data Relevance	Low	Medium	High, very targeted

UK Data Service

Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

Questions

Nathan Cunningham Functional Director Big Data Network Support

njcunna@essex.ac.uk

http://ukdataservice.ac.uk

